Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion
MilwaukeeMilwaukee Milwaukee
34-30-10, 78pts · 8th in Conference Ouest

Milwaukee
GP: 74 | W: 34 | L: 30 | OTL: 10 | P: 78
GF: 100 | GA: 116 | PP%: 19.80% | PK%: 77.78%
DG: Julien St-Amour Lavigne | Morale : 37 | Moyenne d’équipe : N/A
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Milwaukee
34-30-10, 78pts
1
FINAL
2 Portland
31-30-13, 75pts
Team Stats
W1StreakL1
21-13-3Home Record18-14-5
13-17-7Away Record13-16-8
5-3-2Last 10 Games4-4-2
1.35Buts par match 1.36
1.57Buts contre par match 1.77
19.80%Pourcentage en avantage numérique17.56%
77.78%Pourcentage en désavantage numérique79.10%
Chicago Wolf
36-31-7, 79pts
1
FINAL
2 Milwaukee
34-30-10, 78pts
Team Stats
L1StreakW1
19-15-3Home Record21-13-3
17-16-4Away Record13-17-7
4-4-2Last 10 Games5-3-2
1.42Buts par match 1.35
1.41Buts contre par match 1.57
18.82%Pourcentage en avantage numérique19.80%
81.56%Pourcentage en désavantage numérique77.78%
Meneurs d'équipe

Statistiques d’équipe
Buts pour
100
1.35 GFG
Tirs pour
960
12.97 Avg
Pourcentage en avantage numérique
19.8%
60 GF
Début de zone offensive
32.0%
Buts contre
116
1.57 GAA
Tirs contre
968
13.08 Avg
Pourcentage en désavantage numérique
77.8%%
70 GA
Début de la zone défensive
33.6%
Informations de l'équipe

Directeur généralJulien St-Amour Lavigne
DivisionCentral
ConférenceConference Ouest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro10
Équipe Mineure23
Limite contact 33 / 250
Espoirs41


Historique d'équipe

Saison actuelle34-30-10 (78PTS)
Historique0-0-0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Marian StudenicX100.00716292726278836250615963564849646800241775,000$
2Gavin Brindley (R)X100.00736299706232304455384459424444506800183950,000$
3Bradly Nadeau (R)X100.00715999675932304450384458424444506800183950,000$
4Tyler PitlickX100.00904695777556756231595669256767654400311787,500$
5Emil Heineman (R)X100.00746984656954536250566364604444636800212897,500$
6Mason ShawXX100.00809955696751636757605768255555626800241775,000$
7Joona KoppanenXX100.00797588637575815265534764454444574400252775,000$
8Tyler AngleX100.00696284636267705670505760544444596800231850,833$
9Vladislav KolyachonokX100.00746987776968735225345462514747596800221789,167$
10Tyler Kleven (R)X100.00767775687763675125464262404444556800212916,667$
Rayé
MOYENNE D’ÉQUIPE100.0076688669685863554850526344484858630
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
Rayé
MOYENNE D’ÉQUIPE0.000000000000000000
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Bradly NadeauMilwaukee (NSH)LW182005-05-05Yes160 Lbs5 ft10NoNoNo3Pro & Farm950,000$0$0$No950,000$950,000$Lien
Emil HeinemanMilwaukee (NSH)RW212001-11-16Yes185 Lbs6 ft1NoNoNo2Pro & Farm897,500$0$0$No897,500$Lien
Gavin BrindleyMilwaukee (NSH)C182004-10-05Yes175 Lbs5 ft9NoNoNo3Pro & Farm950,000$0$0$No950,000$950,000$Lien
Joona KoppanenMilwaukee (NSH)C/LW251998-02-25No194 Lbs6 ft5NoNoNo2Pro & Farm775,000$0$0$No775,000$Lien / Lien NHL
Marian StudenicMilwaukee (NSH)RW241998-10-28No165 Lbs6 ft0NoNoNo1Pro & Farm775,000$0$0$NoLien / Lien NHL
Mason ShawMilwaukee (NSH)C/LW241998-11-02No180 Lbs5 ft9NoNoNo1Pro & Farm775,000$0$0$NoLien / Lien NHL
Tyler AngleMilwaukee (NSH)C232000-09-30No172 Lbs5 ft10NoNoNo1Pro & Farm850,833$0$0$NoLien
Tyler KlevenMilwaukee (NSH)D212002-01-10Yes200 Lbs6 ft4NoNoNo2Pro & Farm916,667$0$0$No916,667$Lien
Tyler PitlickMilwaukee (NSH)RW311991-11-01No200 Lbs6 ft2NoNoNo1Pro & Farm787,500$0$0$NoLien / Lien NHL
Vladislav KolyachonokMilwaukee (NSH)D222001-05-26No189 Lbs6 ft1NoNoNo1Pro & Farm789,167$0$0$NoLien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
1022.70182 Lbs6 ft01.70846,667$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
140122
230122
320122
410122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
140122
230122
320122
410122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
160122
240122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
240122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
160122
240122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
240122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
16012260122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
160122
240122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
240122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
, , ,
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
, , ,
Tirs de pénalité
, , , ,
Gardien
#1 : , #2 :


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Albany21100000431110000002021010000023-120.50048120117324693719532842148245441310220.00%7271.43%046894149.73%47498847.98%543100853.87%179913031819499877435
2Binghamton21000001532110000003031000000123-130.75051015011732469341953284214822528117342.86%9277.78%046894149.73%47498847.98%543100853.87%179913031819499877435
3Bridgeport21100000220110000001011010000012-120.500246011732469271953284214826941127114.29%3166.67%046894149.73%47498847.98%543100853.87%179913031819499877435
4Charlotte Checkers42101000633220000004132010100022060.75061117011732469651953284214838141502222313.64%20385.00%046894149.73%47498847.98%543100853.87%179913031819499877435
5Chicago21000010413110000003121000001010141.00046100117324692519532842148271410913323.08%5180.00%046894149.73%47498847.98%543100853.87%179913031819499877435
6Chicago Wolf2110000023-1110000002111010000002-220.500246001732469271953284214829710191317.69%80100.00%046894149.73%47498847.98%543100853.87%179913031819499877435
7Grand Rapids41201000770210010005232020000025-340.5007121900173246945195328421485317902316318.75%30776.67%046894149.73%47498847.98%543100853.87%179913031819499877435
8Hamilton21100000321110000003121010000001-120.500369001732469191953284214830118687228.57%14285.71%046894149.73%47498847.98%543100853.87%179913031819499877435
9Hartford2020000015-41010000003-31010000012-100.000123001732469161953284214830747177114.29%6183.33%046894149.73%47498847.98%543100853.87%179913031819499877435
10Hersey2010010002-21010000001-11000010001-110.25000000173246925195328421481863810800.00%90100.00%046894149.73%47498847.98%543100853.87%179913031819499877435
11Hershey22000000303110000002021100000010141.0003690217324692819532842148152118813323.08%40100.00%046894149.73%47498847.98%543100853.87%179913031819499877435
12Houston201010002201010000012-11000100010120.500246011732469311953284214821712416600.00%7271.43%046894149.73%47498847.98%543100853.87%179913031819499877435
13Iowa21100000330110000002111010000012-120.5003690017324692919532842148241168106233.33%9366.67%046894149.73%47498847.98%543100853.87%179913031819499877435
14Lake Erie2020000015-41010000012-11010000003-300.000123001732469271953284214847216811700.00%9455.56%146894149.73%47498847.98%543100853.87%179913031819499877435
15Lowell22000000312110000001011100000021141.0003690117324692219532842148321110988337.50%7185.71%046894149.73%47498847.98%543100853.87%179913031819499877435
16Manchester21000001440110000003211000000112-130.7504812001732469271953284214838914179222.22%18194.44%046894149.73%47498847.98%543100853.87%179913031819499877435
17Manitoba2020000049-51010000015-41010000034-100.00046100017324692319532842148346175106233.33%10640.00%046894149.73%47498847.98%543100853.87%179913031819499877435
18Norfolk2110000024-21010000014-31100000010120.5002460117324692819532842148265951214214.29%5340.00%046894149.73%47498847.98%543100853.87%179913031819499877435
19Peroria43000001844210000013212200000052370.87581523001732469531953284214844162911415320.00%18288.89%046894149.73%47498847.98%543100853.87%179913031819499877435
20Philadelphie2020000003-31010000002-21010000001-100.0000000017324691919532842148239289500.00%9277.78%046894149.73%47498847.98%543100853.87%179913031819499877435
21Portland21000100330110000002111000010012-130.7503690017324692319532842148259116103266.67%8187.50%046894149.73%47498847.98%543100853.87%179913031819499877435
22Providence3120000025-32110000024-21010000001-120.33324600173246933195328421484216631714214.29%19384.21%046894149.73%47498847.98%543100853.87%179913031819499877435
23Quad City21000010422110000002111000001021141.000461000173246926195328421481812132159333.33%6183.33%046894149.73%47498847.98%543100853.87%179913031819499877435
24Rochester2000010135-21000000123-11000010012-120.5003690017324692319532842148291329168225.00%8275.00%046894149.73%47498847.98%543100853.87%179913031819499877435
25Rochester22000000413110000002021100000021141.00047110117324692019532842148261396148225.00%80100.00%046894149.73%47498847.98%543100853.87%179913031819499877435
26Rockford Icehogs421001006602010010024-22200000042250.62561218011732469501953284214835162002315533.33%10280.00%046894149.73%47498847.98%543100853.87%179913031819499877435
27Springfield20200000310-71010000013-21010000027-500.0003580017324693419532842148643014515600.00%10730.00%146894149.73%47498847.98%543100853.87%179913031819499877435
28Syracuse4120000147-3211000003302010000114-330.3754812001732469471953284214847142452114321.43%15566.67%046894149.73%47498847.98%543100853.87%179913031819499877435
29Toronto2020000014-31010000013-21010000001-100.000123001732469291953284214819318148112.50%4175.00%046894149.73%47498847.98%543100853.87%179913031819499877435
30Wilkes Barre31100001440110000003032010000114-330.50048120117324694619532842148361442159222.22%11281.82%046894149.73%47498847.98%543100853.87%179913031819499877435
31Worchester2110000023-11010000002-21100000021120.5002351017324692219532842148267881010220.00%9366.67%046894149.73%47498847.98%543100853.87%179913031819499877435
Total74293003426100116-16372013011025854437917023244262-20780.52710018728711317324699601953284214896833930264093036019.80%3157077.78%246894149.73%47498847.98%543100853.87%179913031819499877435
_Since Last GM Reset74293003426100116-16372013011025854437917023244262-20780.52710018728711317324699601953284214896833930264093036019.80%3157077.78%246894149.73%47498847.98%543100853.87%179913031819499877435
_Vs Conference401416033135770-132098011013032-22058022122738-11420.525571041611317324695271953284214853219520712171523019.74%1884775.00%246894149.73%47498847.98%543100853.87%179913031819499877435
_Vs Division18960210224231952011011213-19440100112102250.694244569031732469240195328421482169179993701318.57%671479.10%146894149.73%47498847.98%543100853.87%179913031819499877435

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
7478W11001872879609683393026409113
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
7429303426100116
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
37201311025854
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
3791723244262
Derniers 10 matchs
WLOTWOTL SOWSOL
530200
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
3036019.80%3157077.78%2
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
195328421481732469
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
46894149.73%47498847.98%543100853.87%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
179913031819499877435


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
2 - 2024-10-0112Milwaukee2Peroria1AWSommaire du match
3 - 2024-10-0227Rockford Icehogs3Milwaukee2BLXSommaire du match
5 - 2024-10-0442Milwaukee0Charlotte Checkers1ALSommaire du match
7 - 2024-10-0659Peroria1Milwaukee0BLXXSommaire du match
8 - 2024-10-0765Milwaukee0Wilkes Barre1ALXXSommaire du match
10 - 2024-10-0986Grand Rapids1Milwaukee2BWXSommaire du match
12 - 2024-10-11103Milwaukee1Syracuse2ALXXSommaire du match
14 - 2024-10-13122Syracuse2Milwaukee0BLSommaire du match
15 - 2024-10-14139Hamilton1Milwaukee3BWSommaire du match
18 - 2024-10-17164Providence3Milwaukee0BLSommaire du match
19 - 2024-10-18170Milwaukee3Rockford Icehogs2AWSommaire du match
21 - 2024-10-20196Charlotte Checkers0Milwaukee2BWSommaire du match
22 - 2024-10-21207Milwaukee2Worchester1AWSommaire du match
24 - 2024-10-23224Portland1Milwaukee2BWSommaire du match
26 - 2024-10-25237Milwaukee0Hersey1ALXSommaire du match
28 - 2024-10-27257Milwaukee2Springfield7ALSommaire du match
29 - 2024-10-28267Charlotte Checkers1Milwaukee2BWSommaire du match
31 - 2024-10-30289Hershey0Milwaukee2BWSommaire du match
33 - 2024-11-01299Milwaukee1Rockford Icehogs0AWSommaire du match
35 - 2024-11-03319Springfield3Milwaukee1BLSommaire du match
37 - 2024-11-05338Peroria1Milwaukee3BWSommaire du match
39 - 2024-11-07353Milwaukee2Binghamton3ALXXSommaire du match
41 - 2024-11-09364Milwaukee0Syracuse2ALSommaire du match
43 - 2024-11-11384Quad City1Milwaukee2BWSommaire du match
44 - 2024-11-12396Milwaukee3Manitoba4ALSommaire du match
46 - 2024-11-14414Milwaukee1Bridgeport2ALSommaire du match
48 - 2024-11-16426Rockford Icehogs1Milwaukee0BLSommaire du match
50 - 2024-11-18446Chicago1Milwaukee3BWSommaire du match
52 - 2024-11-20461Milwaukee2Charlotte Checkers1AWXSommaire du match
53 - 2024-11-21479Worchester2Milwaukee0BLSommaire du match
55 - 2024-11-23489Milwaukee1Norfolk0AWSommaire du match
57 - 2024-11-25508Milwaukee0Providence1ALSommaire du match
58 - 2024-11-26523Milwaukee2Quad City1AWXXSommaire du match
59 - 2024-11-27534Albany0Milwaukee2BWSommaire du match
61 - 2024-11-29557Norfolk4Milwaukee1BLSommaire du match
63 - 2024-12-01572Milwaukee2Rochester1AWSommaire du match
64 - 2024-12-02583Milwaukee1Wilkes Barre3ALSommaire du match
66 - 2024-12-04599Philadelphie2Milwaukee0BLSommaire du match
68 - 2024-12-06620Hersey1Milwaukee0BLSommaire du match
69 - 2024-12-07637Manitoba5Milwaukee1BLSommaire du match
71 - 2024-12-09647Milwaukee0Philadelphie1ALSommaire du match
73 - 2024-12-11663Milwaukee0Toronto1ALSommaire du match
75 - 2024-12-13684Grand Rapids1Milwaukee3BWSommaire du match
76 - 2024-12-14700Milwaukee1Chicago0AWXXSommaire du match
78 - 2024-12-16714Milwaukee1Iowa2ALSommaire du match
79 - 2024-12-17728Lake Erie2Milwaukee1BLSommaire du match
81 - 2024-12-19745Iowa1Milwaukee2BWSommaire du match
83 - 2024-12-21763Milwaukee1Hershey0AWSommaire du match
84 - 2024-12-22778Hartford3Milwaukee0BLSommaire du match
87 - 2024-12-25802Lowell0Milwaukee1BWSommaire du match
88 - 2024-12-26817Milwaukee1Grand Rapids2ALSommaire du match
90 - 2024-12-28828Milwaukee2Lowell1AWSommaire du match
91 - 2024-12-29846Rochester0Milwaukee2BWSommaire du match
93 - 2024-12-31860Milwaukee0Hamilton1ALSommaire du match
94 - 2025-01-01876Wilkes Barre0Milwaukee3BWSommaire du match
96 - 2025-01-03889Milwaukee1Grand Rapids3ALSommaire du match
97 - 2025-01-04903Milwaukee0Chicago Wolf2ALSommaire du match
99 - 2025-01-06919Rochester3Milwaukee2BLXXSommaire du match
101 - 2025-01-08930Milwaukee1Houston0AWXSommaire du match
102 - 2025-01-09947Toronto3Milwaukee1BLSommaire du match
104 - 2025-01-11965Milwaukee1Manchester2ALXXSommaire du match
106 - 2025-01-13979Manchester2Milwaukee3BWSommaire du match
107 - 2025-01-14995Milwaukee3Peroria1AWSommaire du match
109 - 2025-01-161011Houston2Milwaukee1BLSommaire du match
111 - 2025-01-181029Milwaukee1Hartford2ALSommaire du match
112 - 2025-01-191044Providence1Milwaukee2BWSommaire du match
115 - 2025-01-221064Bridgeport0Milwaukee1BWSommaire du match
116 - 2025-01-231074Milwaukee2Albany3ALSommaire du match
118 - 2025-01-251096Milwaukee0Lake Erie3ALSommaire du match
119 - 2025-01-261101Milwaukee1Rochester2ALXSommaire du match
121 - 2025-01-281113Syracuse1Milwaukee3BWSommaire du match
125 - 2025-02-011135Binghamton0Milwaukee3BWSommaire du match
129 - 2025-02-051158Milwaukee1Portland2ALXSommaire du match
131 - 2025-02-071178Chicago Wolf1Milwaukee2BWSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
8,530,753$ 8,466,667$ 8,466,667$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 8,530,753$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 64,141$ 0$




Milwaukee Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Milwaukee Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Milwaukee Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Milwaukee Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Milwaukee Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA